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Estimation of distribution algorithms (EDAs) have been used to solve numerous hard problems. However, their use with in-group
optimization problems has not been discussed extensively in the literature. A well-known in-group optimization problem is the
multiple traveling salesmen problem (mTSP), which involves simultaneous assignment and sequencing procedures and are shown
in different forms. This paper presents a new algorithm, named EDAMLA, which is based on self-guided genetic algorithm with a
minimum loading assignment (MLA) rule.This strategy uses the transformed-based encoding approach instead of direct encoding.
The solution space of the proposed method is only 𝑛!. We compare the proposed algorithm against the optimal direct encoding
technique, the two-part encoding genetic algorithm, and, in experiments on 34 TSP instances drawn from the TSPLIB, find that its
solution space is 𝑛! ( 𝑛−1

𝑚−1
).The scale of the experiments exceeded that presented in prior studies.The results show that the proposed

algorithmwas superior to the two-part encoding genetic algorithm in terms of minimizing the total traveling distance. Notably, the
proposed algorithm did not cause a longer traveling distance when the number of salesmen was increased from 3 to 10. The results
suggest that EDA researchers should employ the MLA rule instead of direct encoding in their proposed algorithms.

1. Introduction

Estimation of distribution algorithms (EDAs) use the learn-
ing while optimizing principle [1]. Two review articles have
suggested that EDAs have emerged as a prominent alternative
to evolutionary algorithms [2, 3]. In contrast to genetic
algorithms (GAs), which employ crossover and mutation
operators to generate solutions, EDAs explicitly extract global
statistical information from the previous search to build
a posterior probability model of promising solutions from
which new solutions are sampled [4, 5]. This crucial charac-
teristic distinguishes EDAs from GAs [6, 7].

Numerous studies aimed at using EDAs to solve non-
deterministic polynomial-time hard (NP-hard) scheduling
problems have shown that EDAs are able to perform effec-
tively in terms of the solution quality [2, 8, 9]. Ceberio et al.
[2], in particular, extensively tested 13 famous permutation-
based EDAs on four combinatorial optimization problems,

including the quadratic assignment problem, traveling sales-
man problem (TSP), permutation flowshop scheduling prob-
lems (PFSPs), and linear ordering problem. Their paper
provides a good basis for comparison.

Although EDAs are effective in solving various hard
problems, EDA studies seldom extensively discuss a problem.
To our knowledge, only one EDA, namely, that is proposed
by Shim et al. [10], can solve in-group optimization problems
such as the multiple traveling salesmen problem (mTSP) and
parallelmachine scheduling problems (PMSPs) [11]. In-group
optimization problems involve assigning and sequencing
procedures simultaneously. Take the mTSP, for example: a
number of 𝑛 cities are assigned to 𝑚 salesmen and these 𝑛
cities are visited only once by a salesman, where 𝑛 > 𝑚. Thus,
this appears to be an NP-hard problem.

Because only one EDA could solve in-group optimization
problems, there is much room for additional research. In-
group optimization problems are relevant in industry, such
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as in the application of the mTSP. This research developed a
new EDA, named EDAMLA, dealt with by using a self-guided
genetic algorithm (SGGA) [12] with the minimum loading
assignment (MLA) rule to solve the mTSP. As opposed
to direct encoding, the proposed strategy is called the
transformed-based encoding approach. The solution space
of the MLA is only 𝑛!. We compare the proposed algorithm
against the optimal direct encoding technique, the two-
part encoding genetic algorithm (TPGA) [13]. Notably, the
solution space of the two-part encoding approach is 𝑛! ( 𝑛−1

𝑚−1
).

The proposed MLA method, consequently, is superior to
the two-part encoding technique, and an improved solution
quality is expected when the SGGA works with the MLA
method.

This paper is organized as follows: Section 2 primarily
reviews the literature on in-group optimization problems,
encoding techniques, and EDAs. In Section 3, the core MLA
method is presented to dispatch 𝑛 cities to 𝑚 salesmen.
This assignment rule is further employed by the SGGA in
Section 4. Section 5 reveals the effectiveness of the proposed
algorithm, which is compared with the existing famous direct
encoding methods, including the one-chromosome and two-
part chromosome encoding. Finally, we draw conclusions in
Section 6.

2. Background Information

The mTSP is a well-known in-group optimization problem.
We review mTSP studies and their variants in Section 2.1. To
solve in-group optimization problems, numerous encoding
techniques could be applied in evolutionary algorithms.
Solution representations fall into two classes: direct and
indirect encoding methods [11], relevant studies about which
are presented in Sections 2.2 and 2.3, respectively. The final
section illustrates combinatorial-based EDAs.

2.1. In-Group Optimization Problems. Bektas [11] reviewed
the seven types of in-group optimization problems, which we
detail in Table 1. Among the variants of in-group optimization
problems, the most well-known form is the mTSP because
it models daily activities and exists in every enterprise [13].
The problem properties of the mTSP include assignment
and sequence optimization procedures. For instance, we
must optimize the traveling sequence for the route of each
salesman. Both procedures directly lead to the traveling cost
and time of the trip after assigning𝑚 salesmen to visit 𝑛 places
every day. A detailed definition of the mTSP can be found in
[11].

Although the mTSP could be solved using exact algo-
rithms [14–16], large-sized problems are not solved efficiently.
To deal with large-size instances, evolutionary algorithms
(EAs) are a commonly used approach. The first crucial step
of using EAs is selecting the appropriate encodings. Encoding
approaches are presented in the next section.

2.2. Direct Encoding Methods. There are five major direct
encodings of EAs: one-chromosome [17], two-chromosome

Table 1: Application contexts for the in-group optimization prob-
lems.

Application
context Type of application

Routing mTSP [13, 24, 46–48]

Print scheduling Print press scheduling [49]
Preprint advertisement scheduling [50]

Workforce
planning

Bank crew scheduling [51]
Technical crew scheduling [52]
Photographer team scheduling [53]
Interview scheduling [54]
Workload balancing [55]
Security service scheduling [56]

Transportation
planning

School bus routing [57]
Crane scheduling [58]
Local truckload pickup and delivery [59]
Vehicle routing problem [60, 61]

Mission planning Planning of autonomous mobile robots [62–65]
Planning of unmanned air vehicles [66]

Production
planning

Hot rolling scheduling [17]
Parallel machine scheduling with setup [29]

Satellite systems Designing satellite surveying systems [67]

Cities Cities per

Salesman 1 Salesman 2 Salesman 3

7 8 10 15 12 13 5 2 14 3 11 1 6 9 4 6 4 5

salesman

Figure 1: A representation of the two-part chromosome encoding
for 15 cities and three salesmen.

[18, 19], two-part chromosome [13], grouping genetic algo-
rithms (GGAs) [20–22], and matrix representation [23].
Two-part chromosome encoding, which is superior to one-
and two-chromosome encoding [13] because of its smaller
solution space, is depicted in Figure 1.

We assume this encoding with 𝑛 = 15 and 𝑚 = 3.
There are two distinct parts.The first part of the chromosome
represents the permutation of 𝑛 cities. The second part of the
chromosome shows the number of cities assigned to each
𝑚 salesman so that its chromosome length is 𝑚. The total
sum of 𝑚 genes is equal to the number of 𝑛 cities. In [24],
they examined an improved combination of crossover and
mutation operators for the two-part chromosome encoding
method and suggested appropriate genetic operators that
could be applied in GAs.

GGAs commonly use an array of jobs for each parallel
machine, and the processing order of the jobs assigned to
that machine is shown [25]. Kashan et al. [26] extended
the GGAs into the grouping version of the particle swarm
optimization algorithm. Later, Arnaout et al. [23] proposed
a matrix representation of the𝑁 jobs on𝑀machines, whose
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size is𝑀 × 𝑁. Each row indicates the parallel machines and
the processing sequence of the jobs on it. When there are no
jobs to be processed on a machine, number 0 is inserted into
the blank spaces. As a result, it became apparent that GGAs
memory usage was inefficient, though Liao et al. [27] found
that this approach was better than the other four variants of
hybrid ant colony optimization. Thus,𝑀×𝑁−𝑁 spaces are
unused if we apply this encoding technique.

In these direct encoding techniques, the optimal approach
could be the two-part chromosome technique, according
to Carter and Ragsdale [13]. When we have 𝑛 items and
𝑚 groups, the solution space of one-chromosome encoding
requires (𝑛 +𝑚−1)!. Two-chromosome encoding takes 𝑛!𝑚𝑛
and the size of the two-part chromosome is 𝑛! ( 𝑛−1

𝑚−1
).

2.3. Indirect EncodingMethods. The transformed-based encod-
ing type separates sequencing and assignment decisions
because the complex encoding may yield poor results [28].
Its encoding strategy first utilizes permutation encoding and
then assigns the items into groups at every stage. Although
this approach could be used to solve the PMSP [29], the
separated method is also applicable in complex flowshop
problems involving numerous parallel machines in the flow-
shop. Ruiz andMaroto [28] referred to this application as the
priority rules for hybrid flowshops. Wang et al. [30] called it
the earliest completion factory rule for solving the distributed
permutation flowshop scheduling problem. Salhi et al. [31]
selected the index of the machine that allows a job that has
the shortest completion time for solving complex flowshop
scheduling problems.

To achieve optimal efficiency, this study adopts the trans-
formed-based encoding method instead of direct encoding.
In addition, several EAs could apply the assignment rule and
then solve the in-group optimization problem. To evaluate
the performance of the algorithms examined in this study, we
select the mTSP for an extensive comparison.

In presenting the latest development in EDAs, it is clear
that only a few can solve in-group assignment problems.
Thus, this study is relevant to the investigation of in-group
assignment problems.

2.4. Recently Developed Combinatorial-Based EDAs. Unlike
the implicit processing of building blocks in GAs, EDAs
explicitly rely on the used probability model. The building
blocks are based on selection and crossover operators that
do not preserve essential patterns [32].The probability model
is the core factor in affecting the performance of EDAs. The
more accurate the probability model is, the more effective the
algorithm will be in preventing the disruption of essential
building blocks [33]. In general, a distinguishing character-
istic of EDAs is their application of the probabilistic model,
which is not used by GAs.

Numerous attempts at using EDAs to solve sequencing or
combinatorial optimization problems have been made. For
example, Chang et al. [34] proposed a hybrid framework to
alternate between EDAs and genetic operators for solving
the single machine scheduling problem. A position-based

univariate probability model was used in the proposed algo-
rithm. The hybrid framework is beneficial, because though
EDAs efficiently improve solution quality in the first few runs,
the loss of diversity rapidly increases as additional iterations
are executed [7, 35, 36].

Jarboui et al. [37] proposed a hybrid approach, named
EDA-VNS, that combined EDAs with the variable neigh-
borhood search (VNS) [38] to solve PFSPs by using the
minimization of the total flowtime.Their probabilistic model
considered the order of the job queue and the building
blocks of the jobs. This was the first attempt to take into
account both first- and second-order statistical information.
In addition, VNS improved as the EDAwas run. Jarboui et al.
[37] found that EDA-VNS was effective in small benchmarks;
however, for larger problems, VNS was superior to EDA-
VNS in terms of objective values and computational time.
It was unclear why EDA-VNS did not outperform the VNS
in large benchmarks. A new EDA in [4] also employed job
permutation and similar blocks of jobs to solve lot-streaming
flowshop problems. In this EDA, the definitions of job
permutation and similar blocks differed from those of [37];
it also introduced a diversity measure to restart evolutionary
progress when the population diversity decreased to a certain
level.

In contrast to traditional EDAs, an SGGA uses a prob-
abilistic model as the fitness function surrogate [39]. The
probabilistic model guides the evolutionary direction in
selecting candidate solutions for crossover and mutation
operators. An SGGA could solve PFSPs. It could also be
integratedwith dominance properties to solve singlemachine
scheduling problems [40]. An eSGGA was proposed for
problems involving variable interactions [9].

To the best of our knowledge, the first EDA for the
mTSP involved applying the one-chromosome representation
[10]. Because there are 𝑚 − 1 pseudo cities introduced in
the chromosome, every chromosome comprises 𝑛 + 𝑚 − 1
genes. As a result, the dimension of their probability model
𝑃
𝑟
(𝑥), by computing the marginal probability of each city, is
𝑁 × 𝑁 where 𝑁 is 𝑛 + 𝑚 − 1. This might be a drawback of
the first EDAs, which were inherited from one-chromosome
encoding, even though their performance was superior to
three state-of-the-artmultiobjective evolutionary algorithms.
Consequently, the proposed algorithm EDAMLA, together
with the MLA rule, may be the second EDA to solve the
mTSP; it is a promising algorithm that does not use the larger
probability model of EDAs.

3. Minimum Loading Assignment
Rule in the mTSP

Suppose that there is a set of 𝑛 cities, sequenced 𝜋
1
, 𝜋
2
, . . . , 𝜋

𝑛

in 𝜋, that could be assigned to 𝑚 salesmen. These cities are
not yet assigned to any salesmen. The sequence 𝜋 could be
decoded by using an assignment rule to assign the cities to
each salesman. After the assignment rule is executed, we
can calculate the fitness function of each chromosome. We
propose an MLA rule to perform the assignment work. The
following pseudocode in Algorithm 1 illustrates this rule.
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Require:
𝑖: The position of a city in the sequence 𝜋
𝑘[𝑖]: The current number of cities assigned to a salesman 𝑖
Ω
𝑖

𝑘[𝑖]
: The visiting sequence of 𝑛 cities

(1) 𝑖 ← 1
(2) while 𝑖 ≤ 𝑚 do
(3) 𝑘[𝑖] ← 1
(4) Ω𝑖

𝑘[𝑖]
← 𝜋
𝑖

(5) 𝑖 ← 𝑖 + 1
(6) 𝑘[𝑖] ← 𝑘[𝑖] + 1
(7) end while
(8) while 𝑖 ≤ 𝑚 do
(9) Select a salesman 𝑗 who could process the 𝜋

𝑖
with the minimum objective value

(10) Ω𝑗
𝑘[𝑗]
← 𝜋
𝑖

(11) 𝑖 ← 𝑖 + 1
(12) 𝑘[𝑖] ← 𝑘[𝑖] + 1
(13) end whie

Algorithm 1: Minimum loading assignment rule.

Population: A set of solutions
Generations: The maximum number of generations
𝑃(𝑡): Probabilistic model
𝑡: Generation index
(1) Initialize Population
(2) 𝑡 ← 0
(3) Initialize 𝑃(𝑡)
(5) while 𝑡 < 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
(6) EvaluateFitness(Population) with minimum loading assignment rule
(7) Selection/Elitism(Population)
(8) 𝑃(𝑡 + 1) ← BuildingProbabilityModel(Selected Chromosomes)
(9) Self-Guided Crossover( )
(10) Self-Guided Mutation( )
(11) 𝑡 ← 𝑡 + 1
(12) end while

Algorithm 2: Main procedures of EDAMLA.

In the beginning, the first 𝑚 cities are assigned to 𝑚
salesmen and the objective values of each salesman are
calculated. The objective function of the mTSP would be
the total traveling distance or maximum traveling distance
among salesman.TheMLA rule is then applied iteratively for
unassigned cities. The MLA rule assigns the first unassigned
city in the sequence 𝜋 to a salesman when it results in the
minimum objective value.This assigned city is removed from
𝜋. This process continues until no cities are left in 𝜋.

By using theMLA rule, a city could be assigned to a sales-
man who has less loading. It also ensures that this assigned
city is close to the last city visited by the salesman; a faraway
city would not be considered. Through the MLA rule, mTSP
can be extended to the PMSP with a setup consideration or
the distributed flowshop scheduling problem.

4. Proposed Algorithm: EDAMLA

This section explains the procedures of the EDA with
the MLA rule. The advantages of the proposed method
include preserving the salient genes of the chromosomes
and exploring and exploiting optimal searching directions
for genetic operators [40, 41]. The major difference between
this proposed algorithm and other works is the problem type;
other studies have been aimed at solving the sequencing
problem, whereas we addressed the grouping and sequencing
problems simultaneously. The major procedures of EDAMLA
are shown in Algorithm 2.

In Step (1), the population is initialized and the sequence
of each chromosome is generated randomly. Step (3) builds
the probability matrix 𝑃(𝑡) with a matrix dimension of 𝑛 by
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𝑛, where 𝑛 is the problem size. Each 𝑃
𝑖𝑗
(𝑡) is initialized to

be 1/𝑛, where 𝑛 is the total number of cities in |Parentset|.
This initialization means that all solutions have the same
likelihood of being an optimal solution. The reason for such
an initialization is that we have no information about the
location of promising solutions.

In Step (5), we evaluate the objective value of each
solution. In addition, the MLA rule is used here (see Algo-
rithm 1). After all 𝑛 cities are assigned to 𝑚 salesmen, the
algorithm evaluates the total distance of all salesmen and the
maximum distance among the 𝑚 salesmen. In Step (6), a
binary tournament selection is used to select good solutions
from the population.

Step (7) forms the probability model 𝑃(𝑡) after the
selection procedure. The calculation details are outlined in
Section 4.1. In Steps (8) and (9), 𝑃(𝑡) is employed in the self-
guided crossover and mutation operators. The probability
model is used as a fitness surrogate, which is shown in
Sections 4.2 to 4.4. We use the two-point partial mapping
crossover and swap mutation in the crossover and mutation
procedures for solving the mTSP.

The proposed algorithm is explained in the following
sections. We first describe the probability model of the EDA
and then explain how the probabilistic model guides the
crossover and mutation operators.

4.1. Formulation of the Probabilistic Model. The probability
model 𝑃(𝑡) of the EDA is defined as

𝑃 (𝑡) = (

𝑃
11
(𝑡) ⋅ ⋅ ⋅ 𝑃

1𝑛
(𝑡)

.

.

. d
.
.
.

𝑃
𝑛1
(𝑡) . . . 𝑃

𝑛𝑛
(𝑡)

) , (1)

where 𝑃
𝑖𝑗
(𝑡) is the probability of city 𝑖 being in position 𝑗 in

a promising solution. 𝑃(𝑡) summarizes the global statistical
information about promising solutions obtained from the
previous search.

Let 𝜙
𝑖𝑗
be the number of solutions in Parentset, in which

city 𝑖 is in position 𝑗 and |Parentset| is the size of Parentset.
𝑃
𝑖𝑗
(𝑡 + 1) in Line (7) is updated as follows:

𝑃
𝑖𝑗
(𝑡 + 1) = (1 − 𝜆) 𝑃

𝑖𝑗
(𝑡) + 𝜆

𝜙
𝑖𝑗
+ 1

|Parentset| + 𝑛
, (2)

where 𝜙
𝑖𝑗
/|Parentset| is the percentage of solutions in which

city 𝑖 is in position 𝑗. It represents the knowledge of promising
solutions learned from the current generation. We use (𝜙

𝑖𝑗
+

1)/(|Parentset| + 𝑛), the Laplace correction of 𝜙
𝑖𝑗
/|Parentset|

in (2), to prevent 𝑃
𝑖𝑗
from becoming very small [42–44].

𝑃
𝑖𝑗
(𝑡) is the historical knowledge of promising solutions. We

update 𝑃(𝑡 + 1) in an incremental manner, as suggested by
[45]. 𝜆 ∈ (0, 1) balances the contribution from historical
knowledge with that of the knowledge learned from the
current generation.

4.2. Probabilistic Model as the Fitness Surrogate. With the
probabilistic model 𝑃(𝑡+1), we define the following function
to predict the quality of solution𝑋:

𝑄
𝑡+1
(𝑋) =

𝑛

∏

𝑘=1

𝑃
𝑘[𝑘]
(𝑡 + 1) , (3)

where [𝑘] is the position of city 𝑘 in 𝑋. The following should
be noted regarding this function:

(i) 𝑃
𝑘[𝑘]
(𝑡+1) is the probability that city 𝑘 in position [𝑘] is

a promising solution.Therefore,𝑄
𝑡+1
(𝑋) canmeasure

how promising𝑋 is.
(ii) In general, 𝑄

𝑡+1
(𝑋) is not an exact probability mea-

sure of the set of all the solutions of𝑋 because

∑

𝑋

𝑄
𝑡+1
(𝑋) ̸= 1. (4)

𝑄
𝑡+1
(𝑋) is only an estimation value of the proba-

bility that 𝑋 is promising. This estimation is more
effective and much easier to compute compared with
other probabilistic models in the literature. Thus, this
method is effective and reduces computational time.

𝑄
𝑡+1
(𝑋) is applied to select good candidate solutions dur-

ing the crossover and mutation operation. In the following
subsection, we drop 𝑡 + 1 in 𝑃 and 𝑄 for simplicity.

4.3. Crossover Operator with Probabilistic Model. With the
surrogate function in (3), we preevaluate the solution quality
of the new solutions generated by the crossover andmutation
operators. In the normal two-point crossover procedure, two
random cut-points, 𝐾 and 𝐿, are set in the beginning, where
𝐾 is less than 𝐿. Then, a parent solution 𝑋 mates with the
other parent solution to yield a new offspring. However, a
difference exists in the proposed algorithm.

Because of the difference, we let a parent solution𝑋mate
with a set of randomly selected solutions 𝑌. The size of 𝑌
ranges from 2 to TC, where TC is the number of tournaments.
These crossover steps produce a set of offspring𝑍.The quality
difference between offspring 𝑍

𝑖
and parent solution 𝑋 is

denoted as Δ
𝑖
. Δ
𝑖
is given as follows:

Δ
1
= 𝑄 (𝑍) − 𝑄 (𝑋)

= [ ∏

𝐾≤𝑘≤𝐿

𝑃
𝑦𝑖𝑖
− ∏

𝐾≤𝑘≤𝐿

𝑃
𝑥𝑖𝑖
] ∏

1≤𝑖<𝐾

𝑃
𝑥𝑖𝑖
∏

𝐿<𝑖≤𝑛

𝑃
𝑥𝑖𝑖
.

(5)

The larger Δ
𝑖
is, the more likely that 𝑍

𝑖
is superior to

other offspring when a set of parent solutions 𝑌 mate with
a solution 𝑋. Hence, 𝑍

𝑖
is added to the offspring population.

We repeat the crossover steps to generate offspring until the
offspring population is full. Both the concepts of self-guided
crossover and self-guided mutation employ the same idea.
The mutation procedure is shown in the next section.

4.4. Mutation Operator with Probabilistic Model. Suppose
that two cities 𝑖 and 𝑗 are randomly selected and they are
located in position 𝑎 and position 𝑏, respectively. 𝑝

𝑖𝑎
and
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𝑝
𝑗𝑏
denote city 𝑖 in position 𝑎 and city 𝑗 in position 𝑏. After

these two cities are swapped, the new probabilities of the
two cities become 𝑝

𝑖𝑏
and 𝑝

𝑗𝑎
. The probability difference

Δ
𝑖𝑗
is calculated as (6), which is a partial evaluation of the

probability difference because the probability sum of the
other cities remains the same:
Δ
𝑖𝑗
= 𝑄 (𝑋



) − 𝑄 (𝑋)

≈

𝑛

∏

𝑝∉(𝑎 or 𝑏),𝑔=[𝑝]
𝑃
𝑡+1
(𝑋
𝑔𝑝
) [(𝑝
𝑖𝑏
𝑝
𝑗𝑎
) − (𝑝

𝑖𝑎
𝑝
𝑗𝑏
)] .

(6)

Now because the part of ∏𝑛
𝑝∉(𝑎 or 𝑏),𝑔=[𝑝]𝑃𝑡+1(𝑋𝑔𝑝) is

always ≥ 0, it can be subtracted, and (6) is simplified as
follows:

Δ
𝑖𝑗
= (𝑝
𝑖𝑏
𝑝
𝑗𝑎
) − (𝑝

𝑖𝑎
𝑝
𝑗𝑏
) ,

Δ
𝑖𝑗
= (𝑝
𝑖𝑏
+ 𝑝
𝑗𝑎
) − (𝑝

𝑖𝑎
+ 𝑝
𝑗𝑏
) .

(7)

If Δ
𝑖𝑗
is positive, it implies that one gene or both genes

might move to a promising area. On the other hand, when
Δ
𝑖𝑗
is negative, the implication is that at least one gene moves

to an inferior position.
On the basis of the probabilistic differences, it is natural

to consider different choices of swapping points during the
mutation procedure. A parameter TM is introduced for the
self-guided mutation operator, which denotes the number of
tournaments in comparing the probability differences among
the TM choices in swap mutation. Basically, TM ≥ 2 while
TM = 1 implies that the mutation operator mutates the genes
directlywithout comparing the probability differences among
the different TM choices.

When TM = 2, suppose the other alternative is that
two cities 𝑚 and 𝑛 are located in position 𝑐 and position 𝑑,
respectively.The probability difference of exchanging cities𝑚
and 𝑛 is

Δ
𝑚𝑛
= (𝑝
𝑚𝑑
+ 𝑝
𝑛𝑐
) − (𝑝

𝑚𝑐
+ 𝑝
𝑛𝑑
) . (8)

After Δ
𝑖𝑗
and Δ

𝑚𝑛
are obtained, the difference between

the two alternatives is as follows:
Δ = Δ

𝑖𝑗
− Δ
𝑚𝑛
. (9)

If Δ < 0, the contribution of swapping cities 𝑚 and
𝑛 is better, so we swap cities 𝑚 and 𝑛. Otherwise, cities
𝑖 and 𝑗 are swapped. Consequently, the option of a larger
probability difference is selected and the corresponding two
cities are swapped. By observing the probability difference
Δ, the self-guided mutation operator exploits the solution
space to enhance the solution quality and prevent destroying
some dominant genes in a chromosome. Moreover, the main
procedure of the self-guided mutation is (9), where the time-
complexity is only a constant after the probabilistic model is
employed. This approach proves to work efficiently.

To conclude, the EDAMLA is obviously different from
the previous EDAs. Firstly, the algorithm utilizes the
transformed-based encoding instead of using the direct
encoding used by Shim et al. [10]. Secondly, the pro-
posed algorithm explicitly embeds the probabilistic model in

the crossover and mutation operators to explore and exploit
the solution space.Most important of all, the algorithmworks
more efficiently than previous EDAs [10] in solving themTSP
because the time-complexity is 𝑂(𝑛) whereas the previous
EDAs need 𝑂(𝑛2) time. They are the major differences to
other existing EDAs.

5. Experimental Results

We conducted extensive computational experiments to eval-
uate the performance of EDAMLA in solving the mTSP. There
were 34 instances selected from the well-known traveling
salesman problem library, TSPLIB, and the size of these
instances ranged from 48 to 400.This paper assumed that the
first city of each instance was the home depot. The number
of salesmen used was 3, 5, 10, and 20. Hence, there were 136
instances in the experiments. Across all the experiments, we
replicated each instance 30 times.

The proposed algorithm was compared with the bench-
mark encoding algorithm and a classic encoding, which
are the TPGA [13] and one-chromosome genetic algorithm
[17], respectively. We employed the genetic operators and
parameter settings of the TPGA suggested by S.-H. Chen
and M.-C. Chen [24], because they used the design-of-
experiments (DOE) to select significant parameters; the
genetic operators are the two-point partialmapping crossover
operator and swap mutation operator. This ensures a fair
comparison between the proposed algorithm and benchmark
encoding algorithm. One-chromosome GA utilizes the same
operators of TPGA and also employs the DOE to tune the
parameters as well. The crossover and mutation rate of the
one-chromosome GA are 0.5 and 0.1, respectively. Finally,
a standard genetic algorithm also applies the MLA rule,
which is named GAMLA. GAMLA could show whether the
performance is enhanced by the assignment rule proposed by
this research.

We implemented the algorithms in Java 2 on an Ama-
zon EC2 with a Windows 2012 server (32-core CPU). The
stopping criterion is the number of examined solutions
which is up to 100,000. The objective functions include
minimizing the total traveling distance and maximizing the
traveling distance, which are detailed in Sections 5.1 and 5.2,
respectively.

5.1. Total Traveling Distance Results. This objective evaluates
the total distance traveled by the 𝑚 salesmen. It reflects the
total cost of the assignment. Figure 2 shows the main effects
plot of the method comparison and the differences in the
number of salesmen assigned. This figure clearly illustrates
that the EDAMLA and GAMLA are superior to the one-
chromosome GA and TPGA. This indicates that the MLA
rule, that is, the transformed-based method, could be a more
promising approach than the direct encoding methods. The
total distance increased greatly with the number of salesmen,
particularlywhen 20 salesmen could be assigned.This implies
that the request of too many salesmen would be inefficient
from a managerial perspective.

Figure 3 depicts the interaction plot between the factor
method and number of salesmen. Notably, the EDAMLA
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Figure 4: Main effects plot of the maximum traveling distance for the compared algorithms.

and GAMLA did not yield a longer total traveling distance
when the number of salesmen increased from two to 10.
However, the TPGA suffered when the number of salesmen
was increased. Thus, this figure reveals the effectiveness of
the transform-based rule compared with the direct encoding
method. According to this interaction plot, if a manager
wants to determine how many salesmen are required, the
lowest total traveling distance would be 5.

Table 2 presents the results of the total traveling distance
for the four algorithms.This table shows theminimum,mean,
maximum, and the standard deviation (StDev). Among these
34 instances, EDAMLA is better than one-chromosome GA,
TPGA, and GAMLA out of the 17 cases when it comes to the
average of the total distance. In addition, the standard devi-
ation of one-chromosome GA, TPGA, GAMLA, and EDAMLA
is 21187, 33230, 19785, and 20041, respectively. It implies that
the EDAMLA yields less variance than one-chromosome GA
and TPGA. EDAMLA might be more robust in terms of the
average performance and the variance.

5.2. Maximum Traveling Distance Results. The maximum
traveling distance was used as the second objective tested
by the three algorithms. Thus, the algorithms minimized the
loading of the salesman with the highest loading. As a result,
this objective balanced the loading among the salesmen. As
shown in Figure 4, both the EDAMLA and GAMLA remained
superior to the one-chromosome GA and TPGA. A primary
reason for these results could be the selection of a suitable
salesman during the assignment phase according to the
MLA rule. Hence, following this rule reduced the maximum
traveling distance.

The assignment of 20 salesmen (see Figure 4) caused the
lowest maximum loading on a salesman. This is a reasonable
result because the loading is distributed over many salesmen.
However, the assignment of 20 salesmen also resulted in
the longest total traveling distance (see Section 5.1). Hence,

the two objectives present a trade-off and should be con-
sidered simultaneously. In Figure 5, it shows the interaction
plot between the method and the number of salesmen. This
plot indicates EDAMLA and GAMLA perform well no matter
how many salesmen are assigned. In addition, the number of
salesmen yields the lowermaximum traveling distance solved
by the four algorithms.

Table 3 shows the complete results for the four algo-
rithms. The EDAMLA and GAMLA are evidently superior
to the one-chromosome GA and TPGA. The GAMLA and
EDAMLA have 20 and 14 lower mean values, respectively.This
phenomenon indicates that the indirect encoding is better
than the direct coding approach. The standard deviation of
one-chromosome GA, TPGA, GAMLA, and the EDAMLA is
14944, 21728, 13037, and 12940, respectively. StDev indicates
that the EDAMLA has less variation than GAMLA and TPGA.
The EDAMLA might perform well in the minimization of the
maximum traveling distance.

6. Conclusions

This study solves an in-group optimization problem that
is rarely solved by EDAs. A new EDA EDAMLA, an EDA
combined with the MLA rule, was proposed. Because the
MLA rule was classified as transform-based encoding, the
proposed algorithm was compared with the TPGA, the
most favorable direct encoding strategy thus far. We eval-
uated these algorithms by solving the mTSP problem for
33 instances drawn from the TSPLIB. The scale of the
experiments was larger than those of other mTSP studies.
Our experimental results showed that the EDAMLA with the
MLA rule outperformed the TPGA for both the objectives
of total traveling and maximum traveling distance. Thus,
the proposed algorithm is capable of efficiently solving the
mTSP problem. In addition, the MLA rule was effective and
could be applied with some GAs originally designed for
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Figure 5: Interaction plot of the maximum distance for the compared algorithms.

permutation-type problems. As a result, this study provides
insight for researchers investigating scheduling problems and
advances the research on in-group optimization problems.
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